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Abstract. The general aim of our work is to support formal reason-
ing about components on top of the distributed dataspace architecture
Splice. To investigate the basic properties of Splice and to support com-
positional verification, we have defined a denotational semantics for a
basic Splice-like language. To increase the confidence in this semantics,
also an operational semantics has been defined which is shown to be
equivalent to the denotational one using the theorem prover PVS. A ver-
ification framework based on the denotational semantics is applied to an
example of top-down development and transparent replication.

1 Introduction

The general aim of our work is to support the development of complex appli-
cations on top of industrial software architectures by means of formal methods.
As a particular example, we consider in this paper components on top of the
software architecture Splice [Boa93,BdJ97] which has been devised at Thales
Nederland (previously called Hollandse Signaalapparaten). It is used to build
large and complex embedded systems such as command and control systems,
process control systems, and air traffic management systems.

The main goal of Splice is to provide a coordination mechanism between
loosely-coupled heterogeneous components. In typical Splice-applications it is
essential to deal with large data streams from sensors, such as radars. Hence
Splice should support real-time and high-bandwidth distribution of data. An-
other aim is to support fault-tolerance, e.g., it should be possible to replicate
components transparently, i.e. without affecting the overall system behaviour.

Splice is data-oriented, with distributed local databases based on keys. It
uses the publish-subscribe paradigm to get loosely-coupled data producers and
consumers. An important design decision is to have minimal overhead for data
management, allowing a fast and cheap implementation that indeed allows huge
data streams. For instance, Splice has no standard built-in mechanisms to ensure
global consistency or global synchronization. If needed, this can be constructed
for particular data types on top of the Splice primitives. Note that this is quite
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different from Linda [Gel85] and JavaSpaces [FHA99], which have a central data
storage. The latter also has a transaction mechanism to handle distributed ac-
cess.

Our aim is to reason about components of the distributed dataspace architec-
ture Splice in a compositional way. This means that we want to deduce properties
of the parallel composition of Splice-components using only the specifications of
the externally visible behaviour of these components. Compositionality supports
verification of development steps during the development process.

Many examples in the literature show that it is convenient to specify com-
ponents using explicit assumptions about the environment. Concerning Splice,
in [HHO2] we propose a framework with an explicit assumption about the quality
of data streams published by environment and a similar commitment of the com-
ponent about its produced data. When putting components in parallel, assump-
tions can be discharged if they are guaranteed by other components. Reasoning
with assumption/commitment [MCB81] or rely/guarantee [Jon83| pairs, however,
easily leads to unsound reasoning. There is a danger of circular reasoning, two
components which mutually discharge each others assumptions, leading to incor-
rect conclusions. Hence it is important to prove the soundness of the verification
techniques. Correctness of compositional verification rules is usually based on a
denotational semantics which assigns a meaning to compound constructs based
on the meaning of its constituents. Earlier work on the verification of Splice-
systems [HvdP02] was based on a complex semantics with environment actions
and its correctness was not obvious.

In this paper we define a denotational semantics for a simple Splice-like
language which is more convenient as a basis for compositional reasoning using
assumptions about the environment. It is, however, far from trivial that this
semantics captures the intuitive understanding of the Splice architecture. Hence,
we also provide a more intuitive operational semantics and prove formally that it
is equivalent to the denotational one. Moreover, we show by a small example of
transparent replication how the denotational framework can be used to support
verification.

Both versions of the semantics have been formulated in the language of the
interactive theorem prover PVS [OSRSCO1]. The equivalence result has been
checked completely using PVS. Also the example application (transparent repli-
cation) has been verified in detail using PVS.

Related to our semantic study is earlier work on the semantics of Splice-like
languages such as a transition system semantics for a basic language of write
and read statements (without query) [BKBdJ98] and a comparison of semantic
choices using an operational semantics [BKBdJ98,BKZ99]. In previous work on a
denotational semantics for Splice [BHdJ00] the semantics of local storages is not
very convenient for compositional verification; it is based on process identifiers
and a partial order of read and write events with complex global conditions.

New in this paper is an operational semantics that deals with local time
stamps and their use for updating local databases. We define an equivalent de-
notational semantics which includes assumptions about the environment of a
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Fig. 1. Splice applications.

component. Moreover, we show that this denotational semantics forms the basis
of a formal framework for specifying and verifying Splice applications.

This paper is structured as follows. Section 2 contains a brief informal expla-
nation of Splice. In Sect. 3 we present a formal syntax of the Splice primitives
considered in this paper. The operational and denotational semantics of this
language are defined in Sect. 4 and Sect. 5, respectively. The main outline of
the equivalence proof can be found in Sect. 6. A framework for specification and
verification is described in Sect. 7 and applied to an example with top-down

design and transparent replication in Sect. 8. Finally, Sect. 9 contains a number
of concluding remarks.

2 Informal Splice Introduction

The Splice architecture provides a coordination mechanism for concurrent com-
ponents. Producers and consumers of data are decoupled. They need not know
each other, and communicate indirectly via the Splice primitives; basically read-
and write- operations on a distributed dataspace. This type of anonymous com-
munication between components is strongly related to coordination languages
such as Linda [Gel85] and JavaSpaces [FHA99). These languages, however, have
a single shared dataspace, whereas in Splice each component has its own datas-
pace, see Fig. 1. Communication between components takes place by means of
¥oca.l agents. A data producer writes data records to the other dataspaces via
its agent. A data consumer uses its agent to subscribe to the required types
of data; only data which matches this subscription is stored. Data items may
be de‘layed and re-ordered and sometimes may even get lost. It is possible to
asso‘::late certain quality-of-service policies with data delivery and data storage.
For instance, for a particular data type, delivery maybe guaranteed (each item

ltfe dehve'red at le§st once) or best effort (zero or more times). Data storage can
volatile, transient, or persistent.
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Each data item within Splice has a unique sort, specifying the fields the
sort consists of and defining the key fields [BdJ97]. In each local dataspace, at
most one data item is present for each key. Basically, a newly received data
item overwrites the current item with the same key (if any). To avoid that old
data items overwrite newer information (recall that data may be delayed and
re-ordered), data records include a time stamp field. A time stamp of a data item
is obtained from the local clock of the data producer when the item is published.
At the local storage of the consumer, data items are only overwritten if their time
stamp is smaller than that of a newly arrived item (with the same key). This
overwriting technique reduces memory requirements and allows a decoupling of
frequencies between producers and consumers. It also reduces the number of
updates to be performed on the dataspace, as not all received records get stored.
The timestamps improve the quality of the data stored, as no record can be
overwritten by older data.

To program components on top of Splice, a Splice API can be called within
conventional programming languages such as C and Java. Splice provides, for in-
stance, constructs for retrieving (reading) data from the local dataspace, and for
publishing (writing) data. Read actions contain a query on the dataspace, select-
ing data items that satisfy certain criteria. Data has a life-cycle attribute, such
as “read”, “unread”, “new”, and “update”, which may be used for additional
filtering.

3 Syntax of a Simple Splice-Like Language

In this section we define the formal syntax of a very simple Splice-like language.
We have embedded the basic Splice primitives in a minimal programming lan-
guage to be able to high-light the essential features and to prove equivalences
between various semantic definitions in a formal way. In Sect. 7.1 we show that
it is easy to extend the language with, e.g. if-then-else and loop constructs. Life-
cycle attributes are not included in the current version, because we detected
some problems with the informal definition (as mentioned in Sect. 9).

‘We consider only one sort. Let Data be some data domain, with a set Key-
Data of key data and a function key: Data — KeyData. Assume a given type
LocalTime to represent values of local clocks (in our PVS representation we
choose the natural numbers).

The type Dataltems of time-stamped data items, consists of records with two
fields: dat of type Data and ts of type LocalTime. A record of type Dataltems
can be written as (#dat := ...,ts := ...#), following the PVS notation. Hence,
for di € Dataltems, we have dat(di) € Data and ts(di) € LocalTime. The
function key is extended to Dataltems by key(di) = key(dat(di)).

Let SVars be a set of variables ranging over sets of elements from Dataltems.
A data expression e yields an element from Data (dependent on the current value
of the program variables). Henceforth we typically use the following variables
ranging over the types mentioned above:
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- d,dp,dy,... over Data

— It,lty, lt1, ... over LocalTime

— dati, datig, datiy, . .. over Dataltems

— diset, disetg, disetq, ... over sets of Dataltems
— ,Zg,Z1,-..,Y,Y0,Y1,..- over SVars

A query g C P(diset) specifies sets of (time-stamped) data items (it may
depend on program variables). A few examples:

— q1 = {diset | for all dati € diset: ts(dati) > 100}
— qo = {diset | for all dati € diset: dat(dati) # 0}
— g9 = {diset | diset # ¢ and diset # z}

For simplicity, we do not give the syntax of data expressions and queries h
The syntax of our programming language is given in Table 1.

Table 1. Syntax Programming Language.

Sequential program S ::= Write(e) | Read(z,q) | S1; S2
Process Pu=S| PP

Informally, the statements of this language have the following meaning:

— Write(e) publishes the data item with value e (in the current state) and
current time stamp (from the local clock).
We model best effort delivery; a data item arrives 0 or more times at e
process, where it might be used to update the local storage if there is
current value with the same key which has a larger or equal time stamp

— Read(z, q) assigns to z some set of data items from local storage that satis
query ¢ (if there are several sets satisfying g, the choice is non-determinist
For instance, for query q; above, we assign to = a set of data items fi
local storage such that each data item has time stamp greater than 10(
there are no such items in local storage, z becomes the empty set. Note t
query g3 above does not allow the empty set; then the read statement blc
until the local storage contains a set of items satisfying the query. Henc
read statement may be blocking, depending on the query.

— S1; Sa: sequential composition of sequential programs S; and Ss.

— Py || Py: parallel composition of processes. A process is a sequential prog:
or a parallel composition of processes.

As a very simple example, consider a few producers and consumers of fli
data. Let .I?ata‘be a record with two fields: flightnr (a string, e.g. K L309)
pos a position in some form, here a natural number for simplicity. The fli

number is the key, that is, key(dati) = flightnr(dati). Consider a produce:
flight data
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)

Py = Vrite((#flightnr := K L567, pos := 1#)
write((#flightnr = LU321, pos := 6#)
Write((#flightnr := K L567, pos := 2#)
Write((# flightnr := K L567, pos := 3#)

and two consumers:

C1 = Read(z1,true) ; Read(yi,q1) ; Read(z1,q;)

Cs =Read(z2,q1) ; Read(y2,42)

whose queries are specified as follows:

q1 = {diset | diset # ¢ and for all dati € diset : flightnr(dati) = KL567}
g2 = {diset | diset # ¢ and for all dati € diset : flightnr(dati) = KL567 and
for all dati; € x5 : ts(dati) > ts(datiy)}

Consider the process P; || C; || Co and assume there are no other producers of

data. Note that the producer does not specify the local time stamp explicitly;

this is added implicitly. Recall that the items produced by P; may arrive at a

different order at the consumers, and they may arrive several times.

Variable z; may be empty (if no data item has been delivered yet — note
that this read is not blocking) or a set with one or two elements, at most one for
each flight number. For instance, it may contain position number 3 for K L567.
Variable y; will be a singleton, since the local storage contains at most one item
with flight number K L567 and the second read is blocking (the query requires
a non-empty set). If there is a position for K L567 in z1, then the position in y;
will be greater or equal (lower values are produced earlier, hence have a smaller
local clock value, and thus they cannot overwrite greater values). Similarly for
z1, where the position is greater or equal than the one in y;. It is possible that
z; = y1. For consumer C5 the second read action requires a newer time stamp,
hence we always have y; # 22 and the position in y, is at least 2.

)

)s
).
)

bl

4 Operational Semantics

We define an operational semantics for a process Sy || ... | Sp of the syntax of
Sect. 3. where the S; are sequential programs. We first define an operational sta-
tus of a sequential process (Def. 1) and a configuration (Def. 3) which represents
the state of affairs during operational execution of a process. Next computation
steps are defined (Def. 5), leading to the operational semantics (Def. 6).

Let DataBases be the type consisting of sets of data items with at most one
item for each key, i.e.
DataBases = {diset C Dataltems| for all datii, datis € diset:

key(datiy) = key(datiz) — datiy = datiz}

Definition 1 (Operational Status). An operational status of a sequential
process, denoted 0s, 0sg, 051, .., is a record with three fields, st, clock and db:

— st : SVars — p(Dataltems), represents the local state, assigning to each
variable a set of data items;
— clock € LocalTime, the value of the local clock;
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— db € DataBases, the local database, a set of data items (at most one for
each key) representing local storage.

Definition 2 (Variant). The variant of local state st with respect to variable
x € SVars and value diset C Dataltems, denoted

disetif y =z

st(y)if y # =z

Similarly, the variant of a record r with fields fi ... f, is defined by

rlf =0)(fi) = {;i(r) Ixf i:: ; ;

Produced data items are sent to an underlying network. Here this is represented
by N, a set of data items, i.e. N C Dataltems. Note that we do not use a
multiset, although a particular item might be produced several times. The use
of a set is justified by the fact that data items may always be delivered more
than once and hence are never deleted from N.

st[z := diset], is defined as (st[z := diset])(y) = {

Definition 3 (Configuration). The state of affairs of a process Si || ... || Sn
during execution is represented by a configuration:

{(S1,081), ..., (Sh, 08n), N)
[t denotes for each sequential process S;, the status os; and the remaining part
S{ that still has to be executed, and the current contents N of the network. For

convenience, we introduce the empty statement E indicating that the process
has terminated.

An execution of 8y | ... || Sy, is represented by sequence of configurations
Co -—)Cl —)Cg——)
Wherf: Cy = ((S15 E,081),...,(Sn ; E,o0s,),8) with, for all i, db(os;) = @.
The idea is that each step in the sequence Cy —s €} — Cy — ... represents

:;ihe e;cecution of an atomic action by some process i. We define the update of a
atabase.

Definition 4 (Update Database). The update of database db using a new
dat:'abase dby, denoted UpdateDb(db, db,) is defined by
dati € UpdateDb(db, dby) iff

— either dati € db and for all datiy € db; with key(datiy) = key(dati) we hav
ts(datiy) < ts(dat), L vith fey(dath) = ey (datd) we heve

= or dati € dby and for all datiy € db with k o) = )
ts(datio) < ts(dati). ’ " Fvldatio) = Rey(dats) we have

Computation steps are defined formally as follows.

Definition 5 (Computation Step). We have a step of process i, i.e.,

((311031) (S 08;) (Sn,08,), N) —s S S N
A LR (3] LV ARAS] ny n/y S ’O .. , (o] I . oS !
iff one of the fOHOWiIlg clauses h)OldS>Z <( ' 31)7 ’ ( v Sl), ’ ( " ")’ )

(Update) S; # E and Sl =8, N

clock(os,), = N, st(os}) = st(os;), clock(os’) =

and there exists a database dby C N that is used to update
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db(os;) such that an element of db; is added if its key is not yet present
and, otherwise, it replaces an element of db(os;) with the same key if its
Jocal time-stamp is strictly greater. Formally, using Def. 4, there exists a
database db; C N such that db(os]) = UpdateDb(db(0s;), dby).
For simplicity, we did not change the local clock (it is not needed), but
alternatively we might require clock(os}) > clock(os;).
Note that the network has not been changed, since data items might be
used several times for an update (modeling the fact that an item might be
delivered by the network several times).
( rite) S; = Write(e); S}, st(os;) = st(os;), db(os}) = db(os;), clock(os}) >
clock(os;), and N’ = N U {(v, clock(os;))} where v is the value of e in the
current state.
Note that, given a syntax of expressions, it would be easy to define the values
of expressions and queries in the current status (see, e.g. [dRABH*01]).
ead) S; =Read(z,q);S;, N' = N, db(os}) = db(os;), clock(os}) = clock(os;),
and there exists a set of data items diset C db(os;) satisfying query g and
such that st(os]) = st(o0s;)[z := diset], i.e. assigning diset to z.

R

For two configurations C; and Cy, define C; —* Cy, for k € IN, by C; —° C;
and C1 —k+1 Cy iff there exists a configuration C such that C; —* C and
C — Ca. Define Cy —* Cy iff there exists a k € IN such that C; —* Cs.

Typically, the operational semantics yields some abstraction of the execution
sequence, depending on what is observable. Here we postulate that only the set
of produced data items in the last configuration of an execution sequence is
(externally) observable.

Definition 6 (Operational Semantics). The operational semantics of a pro-
gram S || ... || Sn, given an initial operational status oso, is defined by
AO(S1 || .- || Sn)(0so) = {N C Dataltems |
((S1; E,080),..,(Sn; E,080),8) —* ((E,081),..,(E,08,), N),
with db(osg) = @ }

Thus the operational semantics of a program yields a set of sets of produced data
items, where each set of produced data items represents a possible execution of
the program.

Example 1. Let 0 be the query specifying that the value 0 should be read, sim-
ilarly for 1. Observe that, for any oso,
O((Read(z,0) ; Write(1)) || (Read(z, 1) ; Write(0)))(oso) = .

S Denotational Semantics

We define the denotational semantics of a program, given an initial status, i.e.
he state of affairs when execution starts. To support our aim to reason with
ASsumptions about the items produced by the environment, such assumptions are
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included in the status. The semantics yields a set of statuses, each representing
a possible execution of the program. . o . . ‘

To achieve compositionality and to describe a process in isolation, it is quite
common that information has to be added to the status to express relations with
the environment explicitly. Here we add, e.g. the set of written data items and
the set of items that are assumed to be produced by the environment.

Moreover, we need a way to represent causality between the written items.
As shown below, this is needed to assign a correct meaning to the program
(Read(r,O);Write(l)) | (Read(z, 1);Write(0)). Here this is achieved by the use
of conceptual logical clocks that are added to the status of each process. They
are updated similarly to Lamport’s logical clocks [Lam78], which ensures that
there exists a global, total order on the produced items.

Let Time be the domain of logical clock values, here we use the natu-
ral numbers. We add a logical clock value to the data items produced. Type
ExtDataltems, with typical variables edi, edio, ediy, . . ., consists of records with
two fields:

— di of type Dataltems, and
~ tm of type Time.

Field tm represents the logical moment of publication. It can be used to construct
a global partial order on the produced data items that reflects causality.

Tield selector di is extended to remove the logical clock values from a set of
extended data items. For a set ediset C ExtDataltems define
diediset) = {di(edi) | edi € ediset}.

A status, typically denoted by s, sq, s1, .., representing the current state of

affairs of a program, is a record with six fields. In addition to the three fields of
the operational status:

— st: SVars — p(Dataltems), the local state (values of variables);
- clock € LocalTime, the value of the local clock;

— db € DataBases, the local database (a set of data items, unique per key);

we have three new fields:

— time € Time, the logical clock, to represent causality;

— ownw C ExtDataltems, the set of extended data items written by the
program itself in the past;

= envw C ExtDataltems, the set of extended data items written by the en-

v.ironment of the program; this is an assumption about all items produced
(including present and future).

Below we define a meaning function M for programs by induction on their
Ztructure. The possible behaviour of a program prog, i.e. a set of statuses, is
efined by M(prog)(so), where sq is the initial status at the start of program

?xecution..Note that this includes an assumption about all data items that have
been or will be produced by the environment. The semantics will be such that
if s € M(prog)(so) then
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— ownw(s) equals the union of ownw(so) and the items written by prog.

— envw(s) = envw(so); the field envw is only used by prog to update its
local storage. Although all items are available initially, constraints on logical
clocks prevent the use of items “too early”.

Next we define M(prog) by induction on the structure of prog.

Write. In the semantics of the write statement the published item, extended
with the current value of the local clock, is added to the ownw field. The local
clock is increased to ensure that subsequent written items get a later time stamp.
In a similar way, a logical clock value has been added.
M(Write(e))(so) =
{s| clock(s) > clock(sy), time(s) > time(so),
ownw(s) = ownw(so) U {(#di := dati,tm := time(s)#)}, where
dati = (#dat := v,ts := clock(so)#), with v the value of e in sq,
and s equals sq for the other fields (st, db and envw) }

Read. To define the meaning of a read statement, we first introduce an auxiliary
Update function which may update the local database with data items written
(by the process itself or by its environment), using UpdateDb of Def. 4.
Update(sp) =
{s| there exists an ediset C ownw(sp) U envw(so)

and a database db; C di(ediset), such that

db(s) = UpdateDb(db(sq), dby),

time(s) >= time(so),

for all edi € ediset, we have tm(edi) < time(s), and

s equals s for the other fields (st, clock, ownw and envw) }

Then the read statement Read(z, g) first updates the local storage and next as-
signs to z a set of data items that satisfies the query g.
M(Read(z, q))(s0) =
{s| exists s; € Update(so) and diset C db(s;) such that

diset satisfies query ¢ and st(s) = st(s1)[z := diset], and

s equals s for the other fields (clock, db, time, ownw and envw) }
Note that we only represent terminating executions; blocking has not been mod-
eled explicitly.

Sequential Composition. Since we only model terminating executions, the
meaning of the sequential composition S; ; S is defined by applying the meaning
of S5 to any status that results from executing Si. In Sect. 7.1 we show how this
can be extended to deal with non-terminating programs.
M(S15 S2)(s0) =

{s| exists s; with s; € M(S1)(s0)A s € M(S2)(s1)}

Parallel Composition. To define parallel composition, let init(so) be the con-
dition db(sg) = @ A ownw(se) = @. Moreover, we use s + ediset to add a set
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ediset C ExtDataltems to the environment writes of s, i.e. envw(s + ediset) =
envw(s) U ediset and all other fields of s remain the same.

In the semantics of Py || Py, starting in initial status sg, the main observatio:
is that envw(sq) contains only the data items produced outside P; || Py. Henc
the semantic function for P, is applied to s; where we add the items writte
by P to the environment writes. Similarly for Py. Then parallel composition i
defined as follows:

M(PL|| P2)(s0) =
{s | init(sy) and there exist s; and sy with
s1 € M(Py)(sp + ownw(sa)),
s2 € M(Py)(s0 + ownw(sy)),
ownw(s) = ownw(s;) U ownw(ss), envw(s) = envw(sg)}

Ezample 2. Consider again the program of Example 1:
(Read(z,0) ; Write(1)) || (Read(z, 1) ; Write(0))

Without using logical clocks, the semantics of parallel composition would al
low for this program a status where envw = @ and ownw contains 0 and !
(each component produces the item required by the other one). This, however
does not correspond to the operational semantics which yields the empty set
In the current version of the semantics, we can indeed show that, for any sg
M((Read(z, 0) ; Write(1)) || (Read(z, 1) ; Write(0)))(so) = @.

6 Equivalence of Denotational and Operational Semantics

In this section we first define what it means that the operational and the deno-
tational semantics of Sect. 4 and 5, resp., are equivalent. Next we give an outline
of how we proved this equivalence formally.

Note that equivalence is far from trivial, since there a number of prominent
differences:

— The operational semantics allows updates of the local database at any point
in time, whereas in the denotational semantics we minimized the number
of updates to keep verification simple, allowing it only once, immediately
before reading items.

~ The parallel composition of the denotational semantics is defined by a few
recursive equations and it is not clear whether this indeed corresponds to
operational execution.

— The denotational semantics has additional fields in a status and the read
statement contains an additional check on logical clock values.

— The underlying network is modeled in different ways.

E.’qm'valence is based on what is externally observable, i.e. two semantics func-
tions are equivalent if they assign the same observable behaviour to any pro-
gram. For the denotational semantics, we choose the same notion of observable
b.ehaviour as has been used in the operational semantics, namely the set of pub-
lished data items. For a set D of denotational statuses, define the observations
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by Obs(D) = {di(ownw(s)) | s € D}. Define for an n-tuple (si,...,s,) of sta-
tuses Obs(s,...,sn) = di(Ui1<i<nownw(s;)), and for a set T of such tuples
Obs(T) = {Obs(s1,...,8a) | (81,...,5.) € T}.

To relate the operational and the denotational semantics, we use a function
Ext to extend an operational status to a status of the denotational semantics;
Ext(os) copies the fields st, clock, and db of os and it sets the fields time to 0
and ownw and envw to @. This leads to the main theorem.

Theorem 1. O(S | ... || Sn)(0s) = Obs(M(Sy || (S2 || (... || Sn)-..))(Ezt(0s)))

We give an outline of the proof that has been checked completely using the
interactive theorem prover PVS. Below we only give the main steps, for instance,
ignoring details about initial conditions. The proof uses three intermediate ver-
sions of the semantics and corresponding lemma’s:

— M’ which is the same as M except that also the write-statement is preceded
by an update action.

Lemma 1. Obs(M(Sy || (S2 || (... | Sn)..))(Ezt(os))) =
Obs(M'(S1 || (S || (o || Sn)-..)) (Ezt(05)))

Note that M and M’ are defined for the parallel composition of two pro-
cesses. But we derive a similar formulation for n processes:

Lemma 2. Obs(M'(Sy || (Sa || (.. || Sn)...))(Ext(0s))) =
Obs({(s1,...,5n) | init(Ext(os)), envw(Ezt(os)) = @ and
forall i, 1 <i<n,s; € M'(S;)(Ext(os)envw := Ujzownw(s;)]) })

— OD which extends the operational semantics O to the status of the denota-
tional semantics (adding time, ownw and envw). Moreover, the network N is
removed. This is achieved by defining the atomic steps of a single sequential
process as (S,8) —ediset (57, "), where ediset represents the set of items
written in the step (a singleton if S starts with a write statement, the empty
set otherwise). This also includes update steps, similar to the update inside
a read statement of the denotational semantics, so including a condition of
the values of logical clocks.

Based on this step relation for one process, we have a step of n parallel
processes, denoted ((S1,81), ..., (Sn, Sn)) — ((S1, 1), ..., (Sp,s1,)), if there
exists an ¢ with (S;,8;) —ediser (S§,s%), and for all j # 1, S;- = S; and
s; = 8; + ediset.
This leads to the following semantics for n processes:
OD(S1 || .. || Sn)(s0) = {(s1,- - - Sn) | tnit(so)A

(Sl ) Ea 80)7 my (Sn ) Ea 30)) —" ((E1 31)7 sty (E) Sn)> }

Lemma 3. O(Sy || ... || Sn)(0s) = Obs(OD(S || .. || Sn)(Ext(0s))

— OS which extends the operational semantics of a sequential process to the
status of the denotational semantics, using therelation (S, s) —cdiset (5, 8')
mentioned above.

Lemma 4. OS5(8) = M/(S), for sequential programs S.
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Now, by the lemmas 1, 2, 3, and 4, theorem 1 reduces to the following lemma.

Lemma 5. Obs(OD(S1 || .. || Sn)(Ext(0s)) =
Obs({(s1,...,8,) | init(Ext(os)), envw(Ext(os)) = @ and
for all i, 1 <i<n, s; € OS(S:)(Ext(os)lenvw := U;zownw(s;)]) })

Proof. We give the main ideas of the proof, showing that the sets are contained
in each other.

C

Suppose (51,...5,) € OD(S1 || ... | Sa)(Ezxt(0s)), that is,

((S1; E, Ext(05)), ..., (Sn ; E, Ext(0s))) —* ((E,51),.-, (E, $n))- .

We have proved by induction on the number of steps in the execution sequence
that this implies, for all 4, 1 < i < n,

(Si; E,Ext(os)|envw 1= Ujz;0wunw(s;)]) —edisety --- —redisety (E, si),

that is, s; € OS(S,)(Ext(os)[envw := Ujzownw(s;)]).

2

Assume, for all i, 1 < i < n that s; € OS(S;)(Ext(os)[envw 1= Ujzownw(s;)])-
Thus we have an operation execution

(Si; E, Ext(0s)envw 1= Ujxsownw(s;)]) —edisety - - - —>ediset, (B 5i)

for each of the sequential processes. We have to show,

((S1; E, Ext(08)),...,(Sn; E,Ezt(0s))) —* ((E,51), ..., (E, 8n)),

i.e., we have to show that these sequential executions can be merged into a global
execution sequence for the parallel program.

Basically, this is done by induction on the total number of steps in all sequen-
tial executions. The global execution sequence is constructed by selecting for
each step the process with the lowest logical time after its next possible step.
This construction is far from trivial, since the local, sequential executions start
with all available environment writes, whereas in the global execution a pro-
cess can only use what has been produced up to the current moment. How-
ever, the constraints on the logical clocks (that have been included in this ex-
tended operational semantics), ensure that only items produced before its cur-
rent logical time are used. Formally, this is captured by the property that if
(S, s+ediset) —egiset, (S',8') (representing a step of a local process) and for all
edi € ediset, tm(edi) > time(s') then (S, ) —ediser, (57,8 [envw = envw(s)])
(i.e. it can be used in the global sequence). Since we execute the process with

the earliest logical time, we can also show that all items produced later cannot
have a smaller logical time stamp. o

7 Verification Framework

In this section we provide a framework that can be used to specify and verify
processes, as shown in Sect. 8. First, in Sect. 7.1, the programming language

is ex'tended with a number of useful constructs. Section 7.2 contains the main
specification and verification constructs.

7.1 Language Extensions
To deal with some more interestin

: g examples, the simple programming language
of Sect. 3 is extended with an

assignment, if-then-else construct, and infinite
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loops. Accordingly, the denotational semantics of Sect. 5 is extended. Since in-
finite loops introduce non-terminating computations, we add one field to the
status:

— term € {true, false}: indicates termination of the process; if it is false all
subsequent statements are ignored.

Henceforth, we assume that sq is such that term(sg) = true, i.e. after sq we can
still execute subsequent statements.

The definition of sequential composition has to be adapted, since it is possible
that the first process does not terminate and thus prohibits execution of the
second process.

M(S1; S2)(s0) =
{s] s € M(S1)(s0) A ~term(s)}u
{s| there exists an s; with s; € M(S1)(s0)A term(sy) A s € M(S2)(s1)}

The meaning of the skip statement can be defined easily.
M(Skip)(so) = {so}

Similarly we can easily define z := e where z € Swars and e an expression
vielding a set of data items. We also add variables that range over data items and
define assignments for such variables. Next we define an if-then-else statement,
where b is a boolean expression.
M(If b Then S; Else Sp Fi)(sg) =

{s| if b is true in st(so) then s € M(S1)(so) else s € M(S2)(s0) }

Finally, we define an infinite loop by means of an infinite sequence of statuses
S0, 81, 83, ..., where s; is the result of executing the loop body ¢ times, provided
all these executions terminate. Otherwise the term-field of s; is false. The written
items are collected by taking the union of the produced items in each execution
of the body. Note that only the own and environment writes are relevant.
M(Do S5 0d)(sg) =
{s| there exists a sequence g, 1, S2,. .. such that for all 1,
if term(s;) then s;11 € M(S)(s;) else term(siy1) = false, and
ownw(s) = Ufsjterm(s)}ownw(si1) and envw(s) = envw(so) }

7.2 Specification and Verification

To obtain a convenient specification and verification framework, we define a
mixed formalism in which one can freely mix programs and specifications, based
on earlier work [Hoo94].

Specifications are part of the program syntax; let p, po, 1, - - -4, 90, G1, - - - D€
assertions, that is, predicates over statuses. A specification is a “program” of the
form Spec(p, ¢) with the following meaning.

M (Spec(p,q))(s0) =
{s| (p(so) implies q(s)) and envw(s) = envw(so) }



196 J. Hooman and J. van de Pol

Next we define a refinement relation = between programs (which now may
include specifications).

Definition 7 (Refinement). For any two programs Py, P, we define
P, = B, iff for all so, we have M(Py)(s0) € M(P2)(s0)-

Note that it is easy to prove that the refinement relation is reflexive and transi-
tive. We have the usual consequence rule.

Lemma 6 (Consequence). If p — po and g — ¢ then Spec(po,q) =
Spec(p,q).

Based on the denotational semantics for Splice, we checked in PVS the sound-
ness of a number of proof rules for programming constructs. For instance, for
sequential composition we have a composition rule and a monotonicity rule which
allows refinements in a sequential context.

Lemma 7 (Sequential Composition). (Spec(p,r);Spec(r,q)) = Spec(p, q).

Lemma 8 (Monotonicity of Sequential Composition). If P; = P; and
Py = P, then (P3 ; P4) = (P1 ; Pz)

The reasoning about parallel composition in PVS mainly uses the semantics
directly. We only have a monotonicity rule, which forms the basis of stepwise
refinement of components.

Lemma 9 (Monotonicity of Parallel Composition). If P; = P; and Py =
P, then (P || Py) = (P || Py).

8 Verification Example

To illustrate our reasoning framework, we first show top-down development of
a typical application consisting of a producer, a transformer, and a consumer
in Sect. 8.1. Next, in Sect. 8.2, we consider transparent replication. The general
question is whether we can replace a single process by two, or more, copies
of the same process without having to change the environment. So, given the
monotonicity rules mentioned above, we look for sufficient conditions for having
P||P = P. We investigate this for the concrete case study developed in Sect. 8.1.

8.1 Top-Down Development

Here. we_consider a .concrete and simple case study, which is prototypical for the
application area, with the following processes:

- Pmduce.r. provides monotonically increasing data (here simply natural num-
bers) with name SensData.

~ Tra o . .
t ‘TLSfOTYTLG‘r‘. assuming it gets increasing SensData items, it provides mono-
r’omca.lly Increasing data with name Intern.
— oy ] : . . . .
' :i::n?ev: assuming the environment provides increasing data with name
2rn, it produces monotonically increasing Display items.
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To formalize this, we define the following types and functions:

~ DataName = {SensData, Intern, Display}, with typical variable dn.

~ DataVal = IN.

= Data is a type of records with two fields: name of type DataName and val
of type DataVal. Let dvar be a variable of type Data.

= KeyData = DataName and key(dvar) = name(dvar).

To formulate the specifications, first a few preliminary definitions are needed,
Where wset is a set of extended data items:

~ NameOwnw(dn)(s) = Yedi € ownw(s) : name(edi) = dn
~ SensData(wset) = {edi | edi € wset A name(edi) = SensData}
Similarly, we have Intern(wset) and Display(wset).
— Increasing(wset) =
Vedil € wset, edi2 € wset : (val(edil) < val(edi2) + ts(edil) < ts(edi2))

Let pre be an assertion expressing that db = @, ownw = @, and all variables
Fanging over sets of data items are initialized to the empty set. It is used as a
Precondition for the processes.

The top-level specification of the overall system is defined as follows.
postTopLevel(s) = envw(s) = @ — Increasing(Display(ownw(s)))
TopLevel = Spec(pre, postT opLevel)

We implement this top-level specification by the parallel composition of the
three processes mentioned above: Producer || Transformer | Consumer
We first specify the processes, without considering their implementation, and
show that these specifications lead to the top-level specification.

The producer writes an increasing sequence of sensor data.
postProd(s) = NameOwnw(SensData)(s)A
Increasing(ownw(s))
Prod = Spec(pre, post Prod)

"The consumer should produce an increasing sequence of Display data, assuming
the environment provides increasing internal values.
postCons = NameOwnw(Display)(s)A
Increasing(Intern(envw(s))) — Increasing(Display(ownw(s)))
Cons = Spec(pre, postCons)

To connect producer and consumer, we specify the transformer as follows.
postT'rans = NameOwnw(Intern)(s)A
Increasing(SensData(envw(s))) — Increasing(Intern(ownw(s)))
Trans = Spec(pre, postTrans)

‘We have proved in PVS that this leads to a correct refinement of the top-level
specification.
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Theorem 2. (Prod || (Trans || Cons)) = TopLevel

Next we consider the implementation of the three components. Let d be a variable
ranging over Data, whereas dset and dold are variables ranging over sets of data
items.
Producer = d := (#name := SensData, val := 0) ;

Do Write(d); d := (#name := SensData,val := val(d) + 1#) 0d
Note that the producer writes all natural numbers, which is not required by
the specification. Also note that subscribers to data with name SensData will
usually read only a (increasing) subsequence of these items. We have proved in
PVS that this is indeed a correct refinement.

Lemma 10. Producer = Prod

Similarly we provide a program for the transformer and show that it is a correct
implementation. Let g(dn,old) be the query that specifies a set of data items
with name dn and local time stamp different from those in variable old (which is
initially empty). The set is allowed to be empty, to avoid blocking computations;
otherwise it will be a singleton with a new, unread, item. The item that has
been read is transformed using a function T'r(dn, dset) which, for simplicity, just
changes the name of the record of the item in dset into dn.
Transformer = Do Read(dset,g{SensData,old)) ;

If dset # &

Then Write(T'r(Intern, dset)) ; old := dset

Else Skip Fi 0d

Lemma 11. Transformer= Trans

Similarly for the consumer. For simplicity, we used the same name transfor-
mation, which makes it possible to derive the correctness of transformer and

consumer from a single proof that was parameterized by the name of the data
sort.

Consumer = Do Read(dset, q(Intern, old)) ;
If dset # ¢

Then Write(Tr(Display, dset)) ; old := dset
Else Skip Fi 0d

Lemma 12. Consumer = Cons

Finally observe that top-level theorem 2 and the lemmas 10, 11, and 12 for the
components lead by the monotonicity property (lemma 9) to

(Producer || (Transformer || Consumer)) = TopLevel

8.2 Transparent Replication

While investigating transparent replication, we observed that the current version

of the transforfner specification is not suitable. The next lemma. expresses that
we cannot replicate the transformer in a transparent way.
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Lemma 13. ~((Trans || Trans) = Trans)

The lemma has been proved by a concrete counter example in PVS. The basic
idea is that the two transformers each have increasing output, but - because
they may write this output at different moment - the local time stamps in these
sequences might be different and hence merging these output streams need not
lead to an increasing sequence.

The main problem is that the items produced get their local time stamp
from the local clock when the item is written. This need not be related to the
temporal validity of the data. Hence we propose an alternative specification for
the transformer where the local time stamp is just copied from the incoming
data item (as we will see later, this also requires a modified write statement).

MaintainTs(s) = Vedi € ownw(s) : edi; € envw(s) : ts(edi) = ts(edii)A

name(edi;) = SensDataA val(edi) = val(edi;)
postTransNew = NameOwnw(Intern) A MaintainT's

TransNew = Spec(pre, postTransNew)

This indeed refines the transformer specification:

Lemma 14. TransNew = Trans
Moreover, this specification can indeed be replicated.

Lemma 15 (Transformer Replication).
(TransNew || TransNew) = TransNew

Hence we have (by theorem 2, lemma 14 and monotonicity):
(Prod || (TransNew || Cons)) = TopLevel

and by lemma 15 and monotonicity:
(Prod || ((TransNew || TransNew) | Cons)) = TopLevel

It remains to implement TransNew. Important part of this specification is that
it just copies the local time stamp (the ts-field). This, however, cannot be imple-
mented with the current write statement, since it always use the current value
of the local clock as its time stamp (the ts field is set to clock(so)). Therefore we
introduce a new write statement Write(e, texp) which has an additional param-
eter, a time expression texp, which specifies the ts value, i.e. in the semantics
of this extended write statement the ts-field in the data item gets the value of
texp.

Query Qtrans specifies a set of data items that is either empty or a singleton
containing an item with name SensData. Expression MkIntern(dset) changes
the name of the item in dset to Intern and copies it value. Now the write state-
ment has a time expression T's(dset) which just yields the ts-field of the data
item in dset.

NewTransformer = Do Read(dset, @Qtrans) ;
If dset # @
Then Write(MkIntern(dset), T's(dset))
Else Skip Fi Od

Lemma 16. NewTransformer = TransNew
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So, finally, we have (Producer]|( NewTransformer|| Consumer)) = TopLevel and
(Producer || ((NewTransformer || NewTransformer) || Consumer)) = TopLevel.

9 Concluding Remarks

We have defined a new denotational semantics for the main primitives of the
industrial software architecture Splice. This architecture is data-oriented and
based on local storages of data items. Communication between components is
anonymous, based on the publish-subscribe paradigm.

New is especially the modeling of time stamps, based on local clocks, and the
update mechanism of local storages based on these time stamps. Moreover, the
denotational semantics supports convenient compositional verification, based on
assumptions about the data items produced by the environment of a component.
Causality between data items is represented by logical time stamps. To simplify
verification, we minimized the number of updates of the local storages and tried
a short, but non-trivial, formulation of parallel composition.

To increase the confidence in this denotational semantics, we also formulated
a rather straightforward operational semantics. Using the interactive theorem
prover PVS, we formally showed that the operational semantics is equivalent to
the denotational one. The proof revealed a number of errors in earlier versions of
the semantics, e.g. concerning the precise interpretation of logical time stamps
representing causality.

As a side-effect, the proof resulted in a number of useful properties. Classical
ones, such as associativity of sequential and parallel composition, but also more
Splice-oriented properties such as idempotence of updates. We also observed that
the current definition of the notion of a lifecycle in Splice breaks idempotence of
updates. Since it indicates a conceptual error in the definition, we have removed
the lifecycle from the current formalization.

A.topic of current work concerns the equivalence classes induced by the se-
mantics, i.e. which programs obtain the same semantics? The question is whether
the d.enotatio.nal semantics is fully abstract with respect to the operational one,
that is, does it only distinguish those programs that are observably different in
some context?
worr?oilas‘seililgg:igow t(lile seman’gi?s can be‘ used. as a basis for a formal frame-
replication diman 1 an composmlon‘al verification. The study of transparent

P clarified the use of local time stamps and led to an improvement

of the wr»1te primitive. In future work we intend to investigate the use of clock
synchronization.
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